
TOWARDS AN INTERACTIVE WEB-BASED MULTIMEDIA PLAYGROUND

Rodrigo Laiola Guimarães

IBM Research
rlaiola@br.ibm.com

ABSTRACT

In this paper we present an online code playground that pays
special attention to the temporal aspect of Web documents.
In particular, we consider the scenario in which
modifications in a Web-based multimedia document are
identified and patched in real-time, with no need to restart
an ongoing presentation from the beginning. Our approach
is especially useful when authoring complex Web
documents containing time-based elements such as CSS3
and SVG animations, HTML5 audio and video.

Index Terms— Online code playgrounds, multimedia
authoring tools, immediate feedback, coding assistance,
programmatic visualization, playback control, HTML, CSS,
JavaScript.

1. INTRODUCTION

Online code playgrounds (e.g., W3Schools1 and JSFiddle)
have proven to be an effective mechanism of
communication within computer programming forums like
Stack Overflow. One of the main reasons is that such
applications allow users to rapidly write, test and share
proofs of concepts using just a Web browser. Nevertheless,
such applications are not designed to address scenarios in
which code modifications are immediately identified and
applied while a multimedia presentation is running, without
restarting its execution from the beginning.

In this paper we introduce Ambulant Sketchbook2, a
code playground that enables users to create and share Web-
based multimedia presentations consisting of HTML
(HyperText Markup Language), CSS (Cascading Style
Sheets) and JavaScript code snippets. Ambulant Sketchbook
is based on insights from Inventing on Principle3, and it
provides a simple user interface with a number of
functionalities such as immediate feedback, coding
assistance, programmatic visualization and playback
control. Ambulant Sketchbook has been developed using
many open source libraries, and currently it works in
modern Web browsers like Chrome, Firefox and Safari.

1 Some technologies mentioned in this demo paper, if unknown,

could very easily be identified via a simple online search;
therefore they will not be Web-referenced.

2 Demo video available at http://goo.gl/C5OFdX.
3 http://vimeo.com/36579366

2. AMBULANT SKETCHBOOK

A user can start creating a Web-based multimedia document
immediately after accessing the application URL (Uniform
Resource Locator) with a Web browser. Once the
application Web page is completely loaded, the user
visualizes a user interface (UI) as shown in Fig. 1. The UI
consists of 2 main components: a code editor and a code
previewer (Fig. 1.A and .B, respectively). The code editor
offers independent code views for HTML, CSS and
JavaScript. The user can access a particular view by simply
clicking on a tab of interest (see Fig 1.1). Such code views
can be used to modify specific parts of a Web-based
multimedia presentation, and the effects are promptly
reflected in the code previewer.

The code editor also offers some configuration options
(e.g., auto play, auto update) and help support (Fig. 1.2).
The user still can save the progress of a sketch to edit it
later, share the URL of a sketch online (e.g., on
StackOverflow), or even download it as a HTML document
(Fig. 1.3). Finally, Ambulant Sketchbook provides playback
primitives to control the presentation of a temporal
document (Fig. 1.4). This functionality is mainly useful
when working with multimedia elements like HTML5 audio
and video, CSS3 and SVG animations. In the current
implementation, we can play, pause, reload and visualize the
presentation’s elapsed time.

2.1. Architecture and implementation

Ambulant Sketchbook has been implemented and deployed
using a number of Web related technologies. In the back-
end, the Web server runs Apache (Linux) with PHP 5.2, and
the database server runs MySQL 5.1. The front-end has
been developed using a combination of server-side scripting
(e.g., PHP for querying the database) and client-side
languages such as HTML, CSS and JavaScript. In the client-
side, we also use the jQuery framework and some third-
party plugins built on top of it.

The code views (HTML, CSS and JavaScript) have
been implemented using a JavaScript library that allows for
in-browser code editing. As CodeMirror4 provides only the
editor component, we made use of a number of third-party
add-ons for auto-completion, code hints, search etc. We also
have taken advantage of CodeMirror’s rich programming

4 http://codemirror.net

API (Application Programming Interface) and CSS theming
to customize the editor to our needs.

The code previewer has been implemented as an
independent Web page, and embedded in the application
Web page as an <iframe> element. This feature is
particularly useful for rendering a sketch in a remote Web
browser (air preview functionality). The real-time
communication between the code editor and the code
previewer (be this local or remote as illustrated in Fig. 2)
has been implemented using the Server-Sent Events (SSE)
JavaScript API. SSE is a W3C (World Wide Web
Consortium) Working Draft that describes how servers can
initiate data transmission towards clients once an initial
client connection has been established. In Ambulant
Sketchbook, SSEs are used to send code updates, playback
commands and to activate cross-component helpers. In other
words, this means that any local modification in the Web-

based multimedia presentation will be reflected in real-time
not only locally, but also on the remote device.

To minimize the effect of modifications (e.g., insertions
and removals) between remote DOM (Document Object
Model) trees, we used a JavaScript diff and patch
implementation5. Such library allows the abstraction of
differences between DOM elements as a ‘diff’ object,
representing the sequence of modifications that must be
applied to one element in order to turn it into another
element. Such diff operation is non-destructive, meaning
that relocations of DOM nodes are preferred over remove-
insert operations.

3. FINAL REMARKS

In this paper we present Ambulant Sketchbook, a Web-
based multimedia playground in its current, yet not final,
state of development. In our application, Web documents
containing CSS3 and SVG animations, HTML5 audio and
video can be changed and controlled in real-time without
having to restart the presentation from the beginning.
Preliminary results suggest that our application is a valid
alternative to simplify the process of learning how to write
and debug multimedia presentations on the Web [1]. As
future work we intend to support other Web-based timing
and synchronization mechanisms via additional code views.

4. REFERENCES

[1] R. L. Guimarães and M. M. Motta, “Design and

Evaluation of an Easy-to-Use Web Playground”.
Adjunct Proceedings of the 20th Brazilian Symposium
on Multimedia and the Web (WebMedia ‘14), João
Pessoa/PB, Brazil, November 18-21, 2014.

5 https://github.com/fiduswriter/diffDOM

Fig. 1. Ambulant Sketchbook’s user interface: (A) code editor; (B) code previewer; (1) tabs for different code views; (2) configuration
options and help information; (3) persistence tabs; (4) playback controls.

Fig. 2. System architecture.

